Biomimetic Sound-Localization in the Plane Utilizing Head-Related Transfer Functions
Renjun Liao and Jason Farina
Advisor: Dr. Vikram Kapila

Proposed Method:

By capturing the relative attenuation of a range of freYuencies, Head Related Transfer Functions (Han tha
yield directional information that is richer than that from either the ITD or IID. Direction-dependence of these frequency attenuations makes HRTFs theoretically distinct for all 3D sound source directions.
$\frac{\operatorname{HRTF}_{\mathrm{R}}(f, \theta, \varphi)}{\operatorname{HRTF}_{\mathrm{L}}(f, \theta, \varphi)}=\frac{\operatorname{Output}_{\mathrm{R}}(f, \theta, \varphi)}{\operatorname{Output}_{\mathrm{L}}(f, \theta, \varphi)}$
$=\frac{\operatorname{FFT}\left(\operatorname{Output}_{\mathrm{R}}(t, \theta, \varphi)\right)}{\operatorname{FFT}\left(\operatorname{Output}_{\mathrm{L}}(t, \theta, \varphi)\right)}$

Results:

Database parameters as a matrix:
$\boldsymbol{\theta}=0: \Delta \theta: 360-\Delta \theta$
$\mathrm{m}=\operatorname{Length}(\theta)$
$\boldsymbol{f}=$ frequency vector
$\operatorname{size}($ Database $)=\operatorname{length}(f) \times \mathrm{m}$
Matching algorithm:
Least square method:
$\theta_{\text {math }}=\left[\left(\operatorname{index}\left(\min \left(\Sigma\left(\left(R-R_{0}\right)^{2}\right)\right)\right)-1\right) \times \Delta \theta\right]$
$R=$ TestData x ones $(1, \mathrm{~m})$
$\mathrm{R}_{0}=$ Database
Standard deviation method:
$\theta_{\text {match }}=[(\operatorname{index}(\min (\Sigma(\# \sigma)))-1) \times \Delta \theta]$
Note: The square above is performed on each element of the matrix. The sums above are performed for each column of the matrix. σ is a matrix containing the standard deviations for the data taken at each frequency of each position.

In general, $\# \sigma=\frac{x-\bar{x}}{\sigma}$.

