

Biomimetic Sound-Localization in the Plane Utilizing Head-Related Transfer Functions

Renjun Liao and Jason Farina Advisor: Dr. Vikram Kapila

Existing Approaches & Problems:

- . Multiple microphone array
- Result: complex system
- . Inter-aural time delay (ITD)
- Analyze phase differences between sound arriving @ two ears
- . Inter-aural intensity difference (IID)
- Analyze intensity differences between sound arriving @ two ears
- . Back-front confusion in 2D
- . Cone of confusion in 3D

3-Microphone Sound-Localization Hexapod

Proposed Method:

By capturing the relative attenuation of a range of frequencies, Head Related Transfer Functions (HRTFs) yield directional information that is richer than that from either the ITD or IID. Direction-dependence of these frequency attenuations makes HRTFs theoretically distinct for all 3D sound source directions.

 $\frac{\text{HRTF}_{R}(f,\theta,\varphi)}{\text{HRTF}_{L}(f,\theta,\varphi)} = \frac{\text{Output}_{R}(f,\theta,\varphi)}{\text{Output}_{L}(f,\theta,\varphi)}$

 $= \frac{\text{FFT}(\text{Output}_{R}(t, \theta, \varphi))}{\text{FFT}(\text{Output}_{L}(t, \theta, \varphi))}$

2 Microphones and Loudspeaker

Results:

Database parameters as a matrix:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency, Hz

Output Signal from SigLab to Loudspeaker

 $\theta = 0:\Delta\theta:360-\Delta\theta$ $m = Length(\theta)$ f = frequency vectorsize(Database) = length(f) x m

Matching algorithm:

Least square method:

 $R_0 = Database$

 $\theta_{\text{match}} = [(\text{index} (\text{min} (\Sigma ((R - R_0)^2))) - 1) \times \Delta \theta]$ $R = \text{TestData} \times \text{ones} (1, m)$

Standard deviation method:

 $\theta_{\text{match}} = [(\text{index} (\text{min} (\Sigma (\# \sigma))) - 1) \times \Delta \theta]$

Note: The square above is performed on each element of the matrix. The sums above are performed for each column of the matrix. σ is a matrix containing the standard deviations for the data taken at each frequency of each position.

In general,
$$\#\sigma = \frac{x-x}{\sigma}$$

Matching Performance for Various Databases and Matching Algorithms | Stranger | Strange

Position	Incremer [deg]	Database I Positio	Test Dat Position	Number Tests Ru	Total N urr of Data Te / Positio	Frequent Range Use Matching [Matchin Methoc	Tests th Matche
12	30	25	5	6	30	1k – 2k	Least Squares	98.89
66	cc	66	cc	ec ec	cc	0 – 5k	Least Squares	82.67
cc	ec	66	cc	ec	cc	0 – 5k	Least Std. Devs.	98.33
36	10	15	5	4	20	0 – 5k	Least Std. Devs.	99.86
72	5	5	5	1	10	0 – 5k	Least Std. Devs.	100

Adjacent Angles Matching Results (High values are necessary for interpolation.)

Positions	Increments [deg]	Database Data / Position	Frequency Range Used for Matching [Hz]	Matching Method	Percent of Tests that Matched Most with a Neighbor
12	30	30	0 – 5k	Least St. Dev.	33.33
36	10	20	0 – 5k	Least St. Dev.	36.11
72	5	10	0 – 5 k	Least St. Dev.	58.33

